

ASWS Hocheffizientes Mono-Schindelmodul

Schindelmodule verwenden elektrisch leitfähige Klebestoffe (ECA) anstelle von Lötbändern und verringern die Rissbildung zwischen den Zellen während der Produktion.

Beim Schindeln werden Solarzellen **ohne** die Verwendung von Kupfer-Verbindern direkt mit Vorder- und Rückseite mechanisch und elektrisch miteinander verbunden, dadurch wird die Zuverlässigkeit im Außenbereich erheblich verbessert.

Der Kleber härtet bei 150°C aus, was zu geringerer thermischer Belastung führt. Konventionelles Löten erfolgt bei hohen Temperaturen über 250°C.

Technische Merkmale des Schindelmoduls

Niedriger Stringstrom

lsc beträgt ~9A, eine 1/5 Schindel hat einen lsc von (~1.BA)

Niedrigere Betriebstemperatur

Niedrigerer Stringstrom resultiert in nierdrigere Zell Betriebstemperatur (-5°C)

Technische Merkmale des Schindelmoduls

Die schmalen Streifen im Verbund bilden eine flexiblere Verbindung als bei Halb- oder Vollzellen, damit kann die Entstehung von Mikroriesen beim Transport, Montage oder in der Produktion reduziert werden

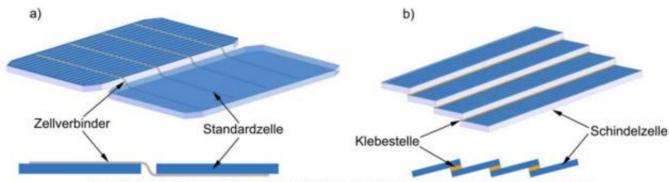
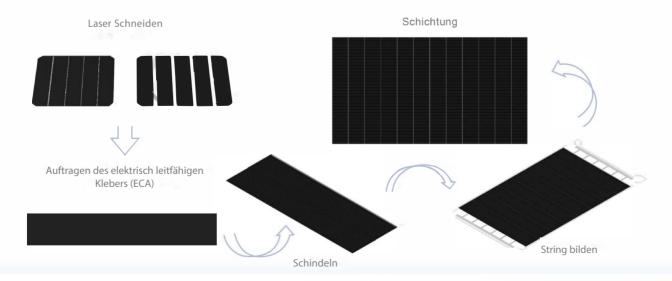



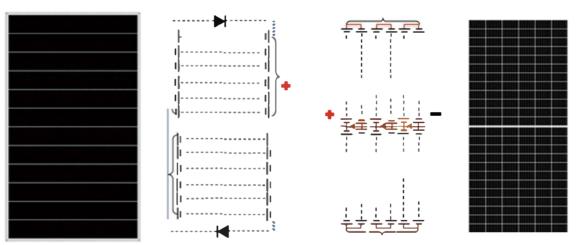
Abb.2: a) Standardverschaltung von Solarzellen mit Zellverbindern b) Schindeltechnologie

Schindelmodul Prozess

ASWS hocheffiziente Mono Schindelmodule

ASWS Schindelmodule sind dafür ausgelegt, unter extremen Bedingungen zu funktionieren und haben die 3-fache IEC-Standardprüfung bestanden.

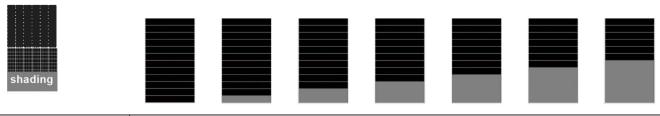
HF10*3


HF15*3

HF200*3

HF1000*3

	IEC ZERTIFIZIERUNG	VDE QUALITÄTSTEST	ASWS QUALITÄTS PROGRAMM		
Testfrequenz einmalig, für die Erstzertifizierung		kontinuierliche Probenahme quartalsweise Überwachung	kontinuierliche Probenahme und Überwachung		
UV	15km/m ²	*	45kWh/m²		
Luftfeuchtigkeitstest (DH)	1000h	1500h	3000h		
Luftfeuchtigkeit- Frost- Test (HF)	10 Zyklen	10Zyklen	30 Zyklen		
Hitzepunktprüfung	*	*	100% Zellproduktion		
EL Test	nur zur Zertifizierung der Module	100% der Modulproduktion	100 % hochauflösende EL Inspektion		
PID Test	-	-	Überwachung der wöchentlichen Produktion		


Optimierter elektrischer Schaltkreis - alle parallel verbunden

Schindelmodul vs. Halbzellenmodul - Weniger Einfluss durch Schatten

Fallstudie

Wenn die Paneele im Hochformat installiert sind, haben Schindelmodule bei horizontaler Verschattung den besten Ertrag! Halbzellenmodule werden abgedeckt und hören auf zu arbeiten, während Schindelmodule weiterhin Strom erzeugen.

Anzahl verschatteter Reihen	0	1 Reihe	2 Reihen	3 Reihen	4 Reihen	5 Reihen	6 Reihen
Strom(A)	10.665	9.082	7 .313	5.504	10.614	10.612	10.609
Max. Leistung(W)	400.5	348.0	258.1	216.2	192.4	191.5	191.4